This repository has been archived on 2024-01-13. You can view files and clone it, but cannot push or open issues or pull requests.
Kevin/pkg/llama/binding.cpp
2023-04-17 17:52:14 +02:00

207 lines
5.4 KiB
C++

#include "binding.h"
#include "common.h"
#include "llama.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined(_WIN32)
#include <signal.h>
#endif
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || \
defined(_WIN32)
void sigint_handler(int signo) {
if (signo == SIGINT) {
_exit(130);
}
}
#endif
int llama_predict(void *params_ptr, void *state_pr, char *result) {
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
gpt_params params = *params_p;
if (params.seed <= 0) {
params.seed = time(NULL);
}
std::mt19937 rng(params.seed);
// Add a space in front of the first character to match OG llama tokenizer
// behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() ||
params.instruct) {
params.n_keep = (int)embd_inp.size();
}
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
// TODO: replace with ring-buffer
std::vector<llama_token> last_n_tokens(n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
std::vector<llama_token> embd;
std::string res = "";
while (n_remain != 0) {
// predict
if (embd.size() > 0) {
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the
// logits in a batch
if (n_past + (int)embd.size() > n_ctx) {
const int n_left = n_past - params.n_keep;
n_past = params.n_keep;
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(),
last_n_tokens.begin() + n_ctx - n_left / 2 - embd.size(),
last_n_tokens.end() - embd.size());
}
if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
n_past += embd.size();
embd.clear();
if ((int)embd_inp.size() <= n_consumed) {
// out of user input, sample next token
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx);
if (params.ignore_eos) {
logits[llama_token_eos()] = 0;
}
id = llama_sample_top_p_top_k(
ctx, last_n_tokens.data() + n_ctx - params.repeat_last_n,
params.repeat_last_n, top_k, top_p, temp, repeat_penalty);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
}
// add it to the context
embd.push_back(id);
// decrement remaining sampling budget
--n_remain;
} else {
// some user input remains from prompt or interaction, forward it to
// processing
while ((int)embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
if ((int)embd.size() >= params.n_batch) {
break;
}
}
}
for (auto id : embd) {
res += llama_token_to_str(ctx, id);
}
// end of text token
if (embd.back() == llama_token_eos()) {
break;
}
}
#if defined(_WIN32)
signal(SIGINT, SIG_DFL);
#endif
strcpy(result, res.c_str());
return 0;
}
void llama_free_model(void *state_ptr) {
llama_context *ctx = (llama_context *)state_ptr;
llama_free(ctx);
}
void llama_free_params(void *params_ptr) {
gpt_params *params = (gpt_params *)params_ptr;
delete params;
}
void *llama_allocate_params(const char *prompt, int seed, int threads,
int tokens, int top_k, float top_p, float temp,
float repeat_penalty, int repeat_last_n,
bool ignore_eos, bool memory_f16, int n_batch,
int n_keep) {
gpt_params *params = new gpt_params;
params->seed = seed;
params->n_threads = threads;
params->n_predict = tokens;
params->repeat_last_n = repeat_last_n;
params->top_k = top_k;
params->top_p = top_p;
params->memory_f16 = memory_f16;
params->temp = temp;
params->repeat_penalty = repeat_penalty;
params->n_batch = n_batch;
params->n_keep = n_keep;
params->prompt = prompt;
params->ignore_eos = ignore_eos;
return params;
}
void *load_model(const char *fname, int n_ctx, int n_parts, int n_seed,
bool memory_f16, bool mlock) {
// load the model
auto lparams = llama_context_default_params();
lparams.n_ctx = n_ctx;
lparams.n_parts = n_parts;
lparams.seed = n_seed;
lparams.f16_kv = memory_f16;
lparams.use_mlock = mlock;
return llama_init_from_file(fname, lparams);
}